MoneroResearch.info |
Resource type: Journal Article BibTeX citation key: Block2023 View all bibliographic details |
Categories: Not Monero-focused Creators: Block, Garreta, Katz, Thaler, Tiwari, Zajac Collection: Cryptology ePrint Archive |
Views: 49/2613
|
Attachments FIAT_SHAMIR_SNARKS.pdf [7/547] | URLs https://eprint.iacr.org/2023/1071.pdf |
Abstract |
We establish new results on the Fiat-Shamir (FS) security of several protocols that are widely used in practice, and we provide general tools for establishing similar results for others. More precisely, we: (1) prove the FS security of the FRI and batched FRI protocols; (2) analyze a general class of protocols, which we call š¯›æ-correlated, that use low-degree proximity testing as a subroutine (this includes many “Plonk-like” protocols (e.g., Plonky2 and Redshift), ethSTARK, RISC Zero, etc.); and (3) prove FS security of the aforementioned “Plonk-like” protocols, and sketch how to prove the same for the others. We obtain our first result by analyzing the round-by-round (RBR) soundness and RBR knowledge soundness of FRI. For the second result, we prove that if a š¯›æ-correlated protocol is RBR (knowledge) sound under the assumption that adversaries always send low-degree polynomials, then it is RBR (knowledge) sound in general. Equipped with this tool, we prove our third result by formally showing that “Plonk-like” protocols are RBR (knowledge) sound under the assumption that adversaries always send low-degree polynomials. We then outline analogous arguments for the remainder of the aforementioned protocols. To the best of our knowledge, ours is the first formal analysis of the Fiat-Shamir security of FRI and widely deployed protocols that invoke it.
|